📋 Table of Contents
🎯 System Overview
Purpose
The Agentic Appointment Scheduler is an AI-powered healthcare automation system that proactively manages appointments, reduces no-shows, and optimizes clinic schedules through intelligent risk assessment, personalized communication, and continuous learning.
Core Components
Risk Assessment Engine
Predicts no-show probability using 15+ factors with 78%+ accuracy
AI Communication System
Claude-powered patient conversations with 80%+ success rate
Schedule Optimization
Automated gap analysis and capacity optimization
ML Pipeline
Continuous model improvement and performance tracking
Multi-Channel Communication
SMS, Email, Voice coordination with intelligent routing
Analytics Dashboard
ROI tracking and performance metrics visualization
🏗️ Architecture & Design
High-Level Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Booking │ │ n8n Workflow │ │ AI Services │ │ Systems │───▶│ Orchestrator │───▶│ (Claude API) │ │ (EMR/CRM) │ │ │ │ │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ ▼ ┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Database │ │ Communication │ │ Analytics & │ │ (PostgreSQL) │◀───│ Gateway │───▶│ Reporting │ │ │ │ (SMS/Email/Voice)│ │ │ └─────────────────┘ └──────────────────┘ └─────────────────┘
Data Flow Process
Technology Stack
Component | Technology | Purpose |
---|---|---|
Orchestration | n8n | Workflow automation and system integration |
AI Engine | Anthropic Claude | Intelligent conversation handling |
Database | PostgreSQL | Appointment data and analytics storage |
Communication | Twilio, Gmail | Multi-channel patient outreach |
Machine Learning | Python/scikit-learn | Risk assessment and optimization |
⚙️ Installation & Setup
Quick Start Installation
git clone https://github.com/your-org/agentic-appointment-scheduler cd agentic-appointment-scheduler
# Database Configuration DB_HOST=localhost DB_PORT=5432 DB_NAME=appointment_scheduler DB_USER=scheduler_user DB_PASSWORD=secure_password # AI Services ANTHROPIC_API_KEY=your_anthropic_key ANTHROPIC_MODEL=claude-sonnet-4-20250514 # Communication Services TWILIO_ACCOUNT_SID=your_twilio_sid TWILIO_AUTH_TOKEN=your_twilio_token GMAIL_CLIENT_ID=your_gmail_client_id GMAIL_CLIENT_SECRET=your_gmail_secret
# Start all services docker-compose up -d # Verify services are running docker-compose ps
-- Core appointments table CREATE TABLE appointments ( id SERIAL PRIMARY KEY, appointment_id VARCHAR(50) UNIQUE NOT NULL, patient_id VARCHAR(50) NOT NULL, patient_name VARCHAR(255) NOT NULL, patient_phone VARCHAR(20), patient_email VARCHAR(255), appointment_time TIMESTAMP NOT NULL, service_type VARCHAR(100) DEFAULT 'consultation', risk_score DECIMAL(4,3), risk_category VARCHAR(20), status VARCHAR(50) DEFAULT 'scheduled', created_at TIMESTAMP DEFAULT NOW() );
🔧 Configuration Guide
Risk Assessment Configuration
// Risk scoring parameters (customizable) const RISK_WEIGHTS = { historicalNoShows: 0.40, // 40% weight appointmentTiming: 0.25, // 25% weight serviceType: 0.15, // 15% weight demographics: 0.10, // 10% weight communication: 0.10 // 10% weight }; const RISK_THRESHOLDS = { low: 0.30, // < 30% = low risk medium: 0.70, // 30-70% = medium risk high: 1.00 // > 70% = high risk };
Communication Templates
Low Risk Template
"Hi {patientName}, confirming your {serviceType} appointment on {date} at {time}. Reply CONFIRM or call to reschedule."
High Risk Template
"IMPORTANT: {patientName}, you have a {serviceType} appointment {date} at {time}. Please confirm ASAP by replying CONFIRM or call {clinicPhone}."
🔄 n8n Workflow Documentation
Main Appointment Processing Workflow
Workflow Components
Appointment Intake
Webhook endpoint for receiving appointment bookings from external systems
Risk Assessment
Advanced algorithm calculating no-show probability using 15+ factors
Communication Scheduling
Risk-based communication timing and channel selection
AI Response Handler
Claude-powered patient conversation processing and intent recognition
Risk Assessment Algorithm
function calculateRiskScore(appointment, patientHistory) { let riskScore = 0; let riskFactors = []; // Historical factors (40% weight) if (patientHistory.total_appointments > 0) { const historyRisk = Math.min(patientHistory.no_show_rate * 0.4, 0.4); riskScore += historyRisk; if (patientHistory.no_show_rate > 0.2) { riskFactors.push(`High historical no-show rate: ${(patientHistory.no_show_rate * 100).toFixed(1)}%`); } } // Timing factors (25% weight) const hour = new Date(appointment.appointment_time).getHours(); if (hour < 9 || hour > 16) { riskScore += 0.12; riskFactors.push(`Non-prime time slot: ${hour}:00`); } // Demographics (10% weight) if (appointment.patient_age < 25) { riskScore += 0.08; riskFactors.push('Young patient demographic'); } return { riskScore: Math.min(riskScore, 1.0), riskCategory: riskScore < 0.3 ? 'low' : riskScore < 0.7 ? 'medium' : 'high', riskFactors: riskFactors }; }
Webhook Endpoints
Endpoint | Method | Purpose |
---|---|---|
/webhook/appointment-booked | POST | Receive new appointment bookings |
/webhook/patient-response | POST | Process patient SMS/email responses |
/webhook/schedule-optimization | POST | Trigger schedule optimization analysis |
🤖 AI Enhancement Prompts
These specialized prompts can be used with various AI tools (ChatGPT, Claude, etc.) to enhance specific components of the appointment scheduling system.
Machine Learning & Data Science Prompts
🧠 Advanced No-Show Prediction Model
ROLE: You are a senior healthcare data scientist tasked with creating a state-of-the-art no-show prediction model for medical appointments. CURRENT BASELINE: 78% accuracy using basic features TARGET: Achieve 90%+ accuracy with explainable AI capabilities AVAILABLE DATA SOURCES: - 2+ years of appointment history (500k+ records) - Patient demographics and insurance information - Communication logs (SMS, email, call responses) - Provider schedules and availability patterns - External data: weather, local events, public health alerts ADVANCED FEATURE ENGINEERING REQUIREMENTS: 1. TEMPORAL FEATURES: Lead time decay, seasonal patterns, holiday effects 2. BEHAVIORAL FEATURES: Communication response patterns, punctuality scores 3. CONTEXTUAL FEATURES: Weather impact, traffic patterns, economic indicators 4. NETWORK FEATURES